32 research outputs found

    Merging Data Sources to Predict Remaining Useful Life – An Automated Method to Identify Prognostic Parameters

    Get PDF
    The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life (RUL) of individual systems or components based on their use and performance. This class of prognostic algorithms is termed Degradation-Based, or Type III Prognostics. As equipment degrades, measured parameters of the system tend to change; these sensed measurements, or appropriate transformations thereof, may be used to characterize degradation. Traditionally, individual-based prognostic methods use a measure of degradation to make RUL estimates. Degradation measures may include sensed measurements, such as temperature or vibration level, or inferred measurements, such as model residuals or physics-based model predictions. Often, it is beneficial to combine several measures of degradation into a single parameter. Selection of an appropriate parameter is key for making useful individual-based RUL estimates, but methods to aid in this selection are absent in the literature. This dissertation introduces a set of metrics which characterize the suitability of a prognostic parameter. Parameter features such as trendability, monotonicity, and prognosability can be used to compare candidate prognostic parameters to determine which is most useful for individual-based prognosis. Trendability indicates the degree to which the parameters of a population of systems have the same underlying shape. Monotonicity characterizes the underlying positive or negative trend of the parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a population of systems. By quantifying these features for a given parameter, the metrics can be used with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal parameter for a given system. An appropriate parameter may be used with a General Path Model (GPM) approach to make RUL estimates for specific systems or components. A dynamic Bayesian updating methodology is introduced to incorporate prior information in the GPM methodology. The proposed methods are illustrated with two applications: first, to the simulated turbofan engine data provided in the 2008 Prognostics and Health Management Conference Prognostics Challenge and, second, to data collected in a laboratory milling equipment wear experiment. The automated system was shown to identify appropriate parameters in both situations and facilitate Type III prognostic model development

    Applying the General Path Model to Estimation of Remaining Useful Life

    Get PDF
    The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life of individual systems or components based on their use and performance. This class of prognostic algorithms is termed Effects-Based or Type III Prognostics. Traditional individual-based prognostics involve identifying an appropriate degradation measure to characterize the system's progression to failure. A functional fit of this parameter is then extrapolated to a pre-defined failure threshold to estimate the remaining useful life of the system or component. This paper proposes a specific formulation of the General Path Model with dynamic Bayesian updating as one effects-based prognostic algorithm. The method is illustrated with an application to the prognostics challenge problem posed at PHM '08

    Wind Turbine Bearing Fault Detection Using Adaptive Resampling and Order Tracking

    Get PDF
    Wind energy is growing increasingly popular in the United States, so it is imperative to make it as cost competitive as possible. Operations and Maintenance (O&M) make up 20-25% of the total cost of onshore wind projects. Unplanned maintenance contributes approximately 75% of the total maintenance costs (WWEA, 2012). Condition-based maintenance strategies intend to maximize the uptime by reducing to the amounts of unplanned maintenance. This should result in an overall decrease in the cost of maintenance. Wind turbines produce an interesting challenge, because their main shaft rotation is both slow and nonstationary. Through the use of adaptive resampling and order tracking, both of these challenges were combated as the bearing fault was identified in the order spectrum then tracked as it progressed. The fault was identified as an outer race defect on the main bearing that initiated sometime during or before installation. The total energy in the order spectrum around the bearing fault rate was identified as a potential front-runner for a prognostic parameter. This paper presents a case study application to operational wind turbine bearing data to demonstrate the ease and intuitiveness of combining adaptive resampling and order tracking to diagnose faults for slow, nonstationary bearings. Prognosis of remaining useful life is proposed with features extracted from the order spectrum, but additional data are needed to develop and demonstrate this analysis

    A Review of Prognostics and Health Management Applications in Nuclear Power Plants

    Get PDF
    The US operating fleet of light water reactors (LWRs) is currently undergoing life extensions from the original 40-year license to 60 years of operation. In the US, 74 reactors have been approved for the first round license extension, and 19 additional applications are currently under review. Safe and economic operation of these plants beyond 60 years is now being considered in anticipation of a second round of license extensions to 80 years of operation.Greater situational awareness of key systems, structures, and components (SSCs) can provide the technical basis for extending the life of SSCs beyond the original design life and supports improvements in both safety and economics by supporting optimized maintenance planning and power uprates. These issues are not specific to the aging LWRs; future reactors (including Generation III+ LWRs, advanced reactors, small modular reactors, and fast reactors) can benefit from the same situational awareness. In fact, many SMR and advanced reactor designs have increased operating cycles (typically four years up to forty years), which reduce the opportunities for inspection and maintenance at frequent, scheduled outages. Understanding of the current condition of key equipment and the expected evolution of degradation during the next operating cycle allows for targeted inspection and maintenance activities. This article reviews the state of the art and the state of practice of prognostics and health management (PHM) for nuclear power systems. Key research needs and technical gaps are highlighted that must be addressed in order to fully realize the benefits of PHM in nuclear facilities

    Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

    Get PDF
    Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems

    A Review of Prognostics and Health Management Applications in Nuclear Power Plants

    Get PDF
    The US operating fleet of light water reactors (LWRs) is currently undergoing life extensions from the original 40- year license to 60 years of operation. In the US, 74 reactors have been approved for the first round license extension, and 19 additional applications are currently under review. Safe and economic operation of these plants beyond 60 years is now being considered in anticipation of a second round of license extensions to 80 years of operation. Greater situational awareness of key systems, structures, and components (SSCs) can provide the technical basis for extending the life of SSCs beyond the original design life and supports improvements in both safety and economics by supporting optimized maintenance planning and power uprates. These issues are not specific to the aging LWRs; future reactors (including Generation III+ LWRs, advanced reactors, small modular reactors, and fast reactors) can benefit from the same situational awareness. In fact, many small modular reactor (SMR) and advanced reactor designs have increased operating cycles (typically four years up to forty years), which reduce the opportunities for inspection and maintenance at frequent, scheduled outages. Understanding of the current condition of key equipment and the expected evolution of degradation during the next operating cycle allows for targeted inspection and maintenance activities. This article reviews the state of the art and the state of practice of prognostics and health management (PHM) for nuclear power systems. Key research needs and technical gaps are highlighted that must be addressed in order to fully realize the benefits of PHM in nuclear facilities

    Application of Artificial Intelligence in Detection and Mitigation of Human Factor Errors in Nuclear Power Plants: A Review

    Get PDF
    Human factors and ergonomics have played an essential role in increasing the safety and performance of operators in the nuclear energy industry. In this critical review, we examine how artificial intelligence (AI) technologies can be leveraged to mitigate human errors, thereby improving the safety and performance of operators in nuclear power plants (NPPs). First, we discuss the various causes of human errors in NPPs. Next, we examine the ways in which AI has been introduced to and incorporated into different types of operator support systems to mitigate these human errors. We specifically examine (1) operator support systems, including decision support systems, (2) sensor fault detection systems, (3) operation validation systems, (4) operator monitoring systems, (5) autonomous control systems, (6) predictive maintenance systems, (7) automated text analysis systems, and (8) safety assessment systems. Finally, we provide some of the shortcomings of the existing AI technologies and discuss the challenges still ahead for their further adoption and implementation to provide future research directions

    Research gaps and technology needs in development of PHM for passive AdvSMR components

    Get PDF
    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components

    A Takagi–Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    No full text
    Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S) fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation
    corecore